Chow Rings of Toric Varieties Defined by Atomic Lattices
نویسنده
چکیده
We study a graded algebra D=D(L,G) defined by a finite lattice L and a subset G in L, a so-called building set. This algebra is a generalization of the cohomology algebras of hyperplane arrangement compactifications found in work of De Concini and Procesi [D2]. Our main result is a representation of D, for an arbitrary atomic lattice L, as the Chow ring of a smooth toric variety that we construct from L and G. We describe this variety both by its fan and geometrically by a series of blowups and orbit removal. Also we find a Gröbner basis of the relation ideal of D and a monomial basis of D over Z.
منابع مشابه
A ug 2 00 3 Chow rings of toric varieties defined by atomic lattices
We study a graded algebra D=D(L,G) over Z defined by a finite lattice L and a subset G in L, a so-called building set. This algebra is a generalization of the cohomology algebras of hyperplane arrangement compactifications found in work of De Concini and Procesi [2]. Our main result is a representation of D, for an arbitrary atomic lattice L, as the Chow ring of a smooth toric variety that we c...
متن کاملEquivariant Chow cohomology of toric varieties
We show that the equivariant Chow cohomology ring of a toric variety is naturally isomorphic to the ring of integral piecewise polynomial functions on the associated fan. This gives a large class of singular spaces for which localization holds in equivariant Chow cohomology with integer coefficients. We also compute the equivariant Chow cohomology of toric prevarieties and general complex hyper...
متن کاملChow Rings of Matroids and Atomistic Lattices
After Feichner and Yuzvinsky introduced the Chow ring associated to ranked atomistic lattices in 2003, little study of them was made before Adiprisito, Huh, and Katz used them to resolve the long-standing Heron-Rota-Walsh conjecture, proving along the way that the Chow rings of geometric lattices satisfy versions of Poincaré duality, the hard Lefschetz theorem, and the Hodge-Riemann relations. ...
متن کاملTropical Intersection Theory from Toric Varieties
We apply ideas from intersection theory on toric varieties to tropical intersection theory. We introduce mixed Minkowski weights on toric varieties which interpolate between equivariant and ordinary Chow cohomology classes on complete toric varieties. These objects fit into the framework of tropical intersection theory developed by Allermann and Rau. Standard facts about intersection theory on ...
متن کاملSingularities of Toric Varieties Associated with Finite Distributive Lattices
With each finite lattice L we associate a projectively embedded scheme V(L); as Hibi has shown, the lattice D is distributive if and only if V(D) is irreducible, in which case it is a toric variety. We first apply Birkhoff's structure theorem for finite distributive lattices to show that the orbit decomposition of V(D) gives a lattice isomorphic to the lattice of contractions of the bounded pos...
متن کامل